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ABSTRACT: A temperature and strain rate dependent
model for the thermoforming process of amorphous poly-
mer materials is proposed. The polymeric sheet is heated
at a temperature above the glass transition temperature
then deformed to take the mold shape by the means of
an applied pressure. The applied process temperature is
taken uniform throughout the sheet and its variation is
due only to the adiabatic heating. The behavior of the
polymeric material is described by a micromechanically-
based elastic-viscoplastic model. The simulations are con-

ducted for the poly(methyl methacrylate) using the finite
element method. The polymer sheet thickness and the ori-
entation of the polymer molecular chains show an impor-
tant dependence on the process temperature, the applied
pressure profile, and the contact forces with the mold
surface. � 2007 Wiley Periodicals, Inc. J Appl Polym Sci 106:
1718–1724, 2007
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INTRODUCTION

The thermoforming process of thermoplastic poly-
meric materials consists of heating and subsequently
deforming into the mold of a thin plastic sheet at a
temperature above its glass transition temperature.
A simplified schematic diagram of the pressure ther-
moforming process is reported in Figure 1. The thin
plastic sheet, clamped at the edges, is heated to a
softened state by means of a radiative heat transfer.
Then immediately after the heater is removed, the
plastic sheet is deformed to take the mold shape by
an applied pressure. The pressure is applied either
to the upper face of the plastic sheet or by the evacu-
ation of the air between the plastic sheet and the
mold. Before removing the applied pressure, the
freezing step take place by cooling the polymer to a
temperature below its glass transition to conserve
the desired final product geometry and its molecular
structure developed during the hot deformation
stage. The behavior of polymeric materials in this
process is strongly affected by the stress level, the
rate of loading and the test temperature.1 Therefore,
an appropriate control of the process strain rate and

temperature, leads to better control of the thermally
activated micromechanical processes in these materi-
als during the thermoforming process.

Work on the thermoforming of polymeric materials
is reported recently by Aus Der Wiesche2 considering
a viscoelastic constitutive model. Warby et al.3 con-
sidered a constitutive model independent on the tem-
perature and on the strain rate, where the parameters
are calibrated on an experimental stress–strain curve
at constant temperature and strain rate. Schmidt
et al.4 developed a 3D numerical method and an ex-
perimental set up to simulate and measure the plastic
sheet temperature during the heating stage.

The present article focuses on a micromechanically-
based elastic-viscoplastic modeling and the simula-
tion of the thermoforming process of amorphous poly-
mers. The model considers the dependence on tem-
perature and strain rate in relating the macroscopic
response to the micromechanical processes. In the
present work the process temperature is assumed
constant and uniform, but the variation of the plastic
sheet temperature may arise from the adiabatic heat-
ing. The proposed micromechanical model is imple-
mented in the commercial finite element software
Abaqus5 via a user material subroutine material.

CONSTITUTIVE MODEL

The following notations are used: F deformation
gradient tensor; V stretch tensor; R rotation tensor; L
velocity gradient tensor; D strain rate tensor; W spin
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tensor; T Cauchy stress tensor; y absolute tempera-
ture; s effective shear stress.

The three-dimensional constitutive model used to
describe the large deformation behavior is based on the
work of Boyce et al.6 and that of Makradi et al.7,8 The
analog representation considers an intermolecular re-
sistance (resistance A) acting in parallel with a network
resistance (resistance B) (see Fig. 2). The total imposed
deformation gradient F is identical to both the intermo-
lecular, FA, and the network deformation gradients, FB:

F ¼ FA ¼ FB (1)

Therefore, the total Cauchy stress T is the sum of the
intermolecular Cauchy stress, TA, and the network
Cauchy stress, TB:

T ¼ TA ¼ TB (2)

Intermolecular resistance: Resistance A

The intermolecular behavior consists of an initially stiff
response followed by a flow. This behavior is repre-
sented in the analog model as a spring in series with a
viscous element. The deformation can therefore be
decomposed into elastic F e

A and thermoplastic F
thp
A

components via the multiplicative decomposition of the
intermolecular resistance deformation gradient, FA:

FA ¼ Fe
AF

thp
A with Fe

A ¼ Ve
AR

e
A (3)

Here V e
A is the elastic stretch tensor and Re

A is the elas-
tic rotation tensor.

Equation of stress

The Cauchy stress is given by the following relation:

TA ¼ 1

JA
=e

h
ln

�
Ve

A

�i
(4)

where JA 5 det(F e
A) is the volume change, Ie is the

fourth order elastic stiffness tensor, and ln(V e
A) is the

Hencky strain.

Evolution equation for F
thp
A : Flow rule

Using the definition of the velocity gradient we can
write:

_F
thp
A ¼ L

thp
A F

thp
A

with

L
thp
A ¼ W

thp
A þD

thp
A

W
thp
A ¼ 0; D

thp
A ¼ Dp þ bðyÞ_y � I

Dp ¼ _gAffiffiffi
2

p
tA

_T 0
A; tA ¼ 1

2
T 0 � T 0

� �1=2

8>>>><
>>>>:

(5)

Here b(y) is the temperature dependent linear ther-
mal expansion coefficient. The rate of the viscous
flow, _gA, follow the Arhenius type expression pro-
posed by Argon1 and modified by Boyce et al.6,9

_gA ¼ _go exp
A � ðsþ a � pÞ

y
1� tA

sþ a � p
� �� �

(6)

The parameters _go and s are, respectively, the refer-
ence shear rate and the deformation resistance. The
parameters A, s, and _go are, fitting parameters (Table
I), chosen to reproduce the experimental dependence
on temperature and strain rate of stress–strain
response.1 We note that there exist other models in
the literature, which may describe the behavior in a
better way, particularly for temperature above Tg

and on a wide range of strain rates.10,11 However,
for simplicity we use the modified Argon’s model,
which shows fairly good results to moderate strain
rates.6–8

Network stress and flow: Resistance B

The deformation acting on the network resistance
represents the network orientation process and the
molecular relaxation process. The deformation gradi-
ent FB can be decomposed into a network orientation

Figure 1 Schematic diagram of pressure thermoforming
process.

Figure 2 Schematic representation of the breakdown of
the total resistance into an intermolecular resistance and
network resistance.
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part F n
B and a flow part F f

B. The multiplicative
decomposition is given as:

FB ¼ Fn
BF

f
B (7)

Equation of stress

The network stress is described by the Arruda and
Boyce’s12 eight chains model, where a stress-stretch
relation is formulated as follows:

TB ¼ 1

JB
CR

ffiffiffiffiffiffiffi
Nrl

p
�ln

‘�1
�lnffiffiffiffiffiffiffi
Nrl

p
� �

�Bn � ð�lnÞ2I
h i

(8)

Here JB 5 det(F n
B) is the network volume change, ‘21

is the inverse Langevin function given by the Padé
approximation ‘21(x) � x(3 2 x2)/(1 2 x2). The num-
ber of rigid links between entanglement Nnl and the
rubbery modulus CR, function of the glace transition
temperature Tg, are described by the following phe-
nomenological equation proposed by Richeton
et al.10

CRðy � TgÞ ¼
CRð0Þ � a � Tg

Tg
� y

Nrlðy � TgÞ ¼ Nrlð0Þ þ b � Tg

(9)

with Tg ¼ Tref
g þ

�c2 � log
�
_eref=_e

�

c1 þ log
�
_eref=_e

� (10)

where CR(0), a, N(0), b are material parameters and
c1, c2 are the Williams, Landel, and Ferry13 (WLF)

parameters relative to the reference glass transition
temperature Tref

g (Table I).
The stretch on each chain in the network, kn, [eq.

(8)] is the root mean square of the distortional
applied network stretches:

�ln ¼
h�

1=3
�
tr
�
�Bn
�	1=2

(11)

where Bn 5 F n
B (F n

B)
T and F n

B 5 (JB)
21/3 F n

B

Evolution equation for FfB: Flow rule

Using the velocity gradient Lf
B we can write:

_Ff
B ¼ Lf

BF
f
B with

Lf
B ¼ W f

B þDf
B

W f
B ¼ 0; Df

B ¼ _gfBffiffiffi
2

p
tB

T 0
B

8><
>: (12)

The relaxation process is prescribed by Bergstrom
and Boyce’s model14 via the stress-assisted chain
reptation based on Doi and Edwards15 theory. The
rate of relaxation is taken to be:

_gfB ¼ CF
1

lf � 1

� �
tB (13)

where kf 5 b1/3(tr(F f
B(F

f
B)

T))c, sB 5 (1/2(T 0
B � T 0

B)
1/2),

and CF is a parameter that expresses the temperature
dependence.

Adiabatic heatings

The basic differential energy balance equation is
given by:

rðyÞ � CpðyÞ � _y� divðGðyÞ � gradðyÞÞ ¼ _q (14)

where q(y) is the density, Cp(y) is the specific heat,
G(y) is the thermal conductivity, and q̇ is the rate of
heat generation due only to plastic flow16 and is
equal to [Trace(T 0Dp)]. The plastic work associated
with the back stress is supposed to be stored as free
energy in the material because of locked-in orienta-
tion.17 In our simulation, the thermal conductivity
term is neglected and the quantity [trace(T 0Dp)] is
approximated by ½sA � _gp�. The resulting energy bal-
ance equation is then given by:

_y ¼ tA � _gp
rðyÞ � cðyÞ (15)

TIME UPDATING AND INTEGRATION
PROCEDURE

The proposed elastic–viscoplastic constitutive model
describing the large deformation of an amorphous

TABLE I
Physical and the Model Parameters

Parameter Equation Value

_go (6) 1.75 3 105

s (MPa) (6) 56

A (K21) (6) 126.85

a (6) 0.26

CR (0) (MPa) (9) 85.42

a (9) 0.2106

Nrl (0) (9) 0.2

b (9) 0.0012

Tref
g (10) 387

c1 (10) 32.58

c2 (10) 83.5

_eref (10) 1

CF (MPa 3 s)21
(12) 0.6 3 103

q (298 K) (19) 1337

cp (298 K) (20) 1835

Young Modulus E (MPa) (4) 200

Poisson ratio m (4) 0.43
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polymer above its glass transition temperature is
implemented into the commercial finite element
code Abaqus5 explicit via the user material subrou-
tine VUMAT. This section focuses on the algorithm’s
structure and the numerical time integration within
each time step.

To calculate the total Cauchy Stress T 5 TA þ TB

from eqs. (4) and (8) at time: (t þ Dt), we need to
calculate respectively the elastic deformation gradi-
ent F e

A and the orientation deformation gradient F n
B.

�
Fe
A ¼ F

�
F
thp
A

��1�tþDt
and

�
Fn
B ¼ F

�
Ff
B

��1�tþDt

(16)

where the total deformation F is calculated from the
guess value displacement at each time step. If the
local developed total Cauchy stress T is not enough
to reach the yield stress, there is no viscoplastic de-
formation, F

thp
A 5 I and FfB 5 I. The contribution to

the total Cauchy stress of the molecular orientation
TB is neglected prior to the yielding. Once the local
Cauchy stress reaches the yield stress, F

thp
A and FfB

deviate from the unit tensors and they have to be
derived from the viscoplastic flow rules, eqs. (5), (6),
and (12), (13), respectively. Expressions for the
change in plastic deformation gradient _F p

tþDt Dt and
the change in flow deformation gradient _F f

tþDt Dt are
found in the beginning, respectively, with
the definitions of the plastic velocity gradient _F

thp
A

5 D
thp
A F

thp
A and flow velocity gradient _F f

B 5 Df
B F f

B.
The equations to update (F

thp
A )tþDt and (F f

B)tþDt are
given by:

�
F
thp
A

�
tþDt

¼
�
F
thp
A

�
t
þ
�
D

thp
A F

thp
A

�
tþDt

Dt and

�
Ff
B

�
tþDt

¼
�
Ff
B

�
t
þ ðDf

BF
f
BÞtþDt Dt

(17)

At each time step, the temperature ytþDt is
updated using the backward difference algorithm:

ytþDt ¼ yt þ _y � Dt (18)

where the temperature time rate _u is calculated from
the eq. (15).

The contact between the mold surface and the
polymer sheet is described by the Coulomb’s friction
model,5 where the friction coefficient l is taken
equal to 0.15.

MATERIAL PROPERTIES

To verify the model described earlier, we chose the
poly(methyl methacrylate) (PMMA) because the ex-
perimental data needed for the calibration of the
constitutive equation could be found in the litera-

ture.18 The dependence on temperature and strain
rate of the PMMA material properties can be found
in the work of Richeton et al.10 Above the glass tran-
sition temperature the physical properties of poly-
mers are known to be strongly influenced by tem-
perature and in particular by the glass transition
temperature, Tg. Empirical and semi-empirical for-
mulae can be found in the books of van Krevelen19

and Bicerano,20 to determine the temperature de-
pendence of material properties as a function of its
corresponding values at temperature y 5 298 K. The
temperature dependence of the density, q(y), and the
heat capacity, cp(y), are given by10:

r
�
y � Tg

�
¼ rð298KÞ � ð1:42Tg þ 44:7Þ

1:27Tg þ 0:30 � y (19)

cpðy � TgÞ ¼ cpð298KÞ � ð0:613þ 1:3 � 10�3 � yÞ (20)

where the parameters q(298 K) and cp(298 K) are,
respectively, the density and the heat capacity of the
PMMA at temperature y 5 298 K.

All the parameters required for eqs. (19) and (20)
are given in Table I.

RESULT AND DISCUSSION

The mold considered for the thermoforming process
simulations is circular with a total diameter ‘ 5 0.6 m
and a depth d 5 0.1 m (see Fig. 1). To determine
the model parameters of the PMMA material, the
predicted true stress-true strain response is com-
pared to experimental data18 (see Fig. 3) for an uni-
axial compression test performed at a temperature,
5 1158C, and at a constant nominal strain rate,
_e ¼ 0:0067s�1. The true stress-true strain curves (Fig. 3)

Figure 3 A compression stress-strain response at nominal
strain rate of _e ¼ 0:0067 s�1 in comparison with the experi-
mental data18 at 1158C.
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exhibits the four characteristic regions of polymeric
material above the glass transition temperature.
Under small deformation the material show a rela-
tively stiff modulus, followed by a rollover to flow at
7.5 MPa. At moderate deformation, the material
shows gradual stiffening followed by a dramatic
hardening at large deformation. The physical and the
model parameters are summarized in Table I. It
should be noted that the simulated results on Figure 3
are conducted under constant ‘‘true’’ strain rate tests.
The comparison with the experimental results of Doo-
long et al.18 may not be very adequate since these
results are obtained by loading under constant
‘‘nominal’’ strain rate.

To verify the model, the predicted thickness distri-
bution of Acrylic (PMMA) sheet is compared with
the experimental results of Dong et al.21,22 and good
agreement is found (see Figs. 4 and 5). The experi-
ment consists of applying a pressure of 20 kPa and
40 kPa on a rectangular polymeric sheet (29 cm long
3 10 cm wide) (bubble inflation test) at temperature
y 5 1608C. Figures 4 and 5 present the relative sheet
thickness in the hoop direction and longitudinal
direction respectively versus the deformed length of
the sheet. The sheet used for this thermoforming test
has a thickness of 0.3 cm and a density q 5 1200
kg/m3, whereas the model parameters used in these
simulations are kept the same as the ones used to fit
the true stress–stain uniaxial compression (Table I).

To illustrate the effect of the mold on the poly-
meric sheet during the thermoforming test a disc
mold with a diameter of 0.6 m is used. A part of this
sheet is shown in Figure 6 at the deformed shape.
The time evolution of the applied pressure during
the thermoforming process depends on the degree of
the complexity of mold geometry. This makes the
boundary condition corresponding to the applied

pressure difficult to set. In our simulation the
applied pressure is chosen to be time independent,
linear between the center and the wall of the mold
(Fig. 1). The maximal applied pressure is on the cen-
ter of the mold (P 5 20 MPa) then decreases linearly
to vanish on the wall of the mold. Between the
clamp and the wall the sheet lays on the mold sur-
face and the applied pressure on this surface is zero.
The only variation of the sheet thickness in this
region stems from the stretching due to the applied

Figure 4 Predicted thickness of the Acrylic (PMMA) sheet
in the hoop direction at the middle of the sheet compared
to the experimental data21,22 at 1608C.

Figure 5 Predicted thickness of the Acrylic (PMMA) sheet
in the longitudinal direction at the middle of the sheet
compared to the experimental data21,22 at 1608C.

Figure 6 Deformed shape of the polymeric sheet: Mesh
distribution.
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pressure inside the mold. Figure 7 illustrate the time
dependence of the strain rate on the wall and the
center of the mold. This behavior is due the materi-
al’s dependence on time which is expressed by eq.
(6). The temperature dependence of the sheet thick-
ness which is the main parameter to control during
the thermoforming process is reported in Figure 8.
The sheet thickness depends strongly on the radial
applied pressure profile. Once the pressure is
applied, the radial sheet thickness profile shows a
minimum on the center of the mold and a maximum
between the wall and the clamp, due to the radial
distribution of the applied pressure. However, once
the sheet gets in contact with the mold’s surface, a
surface contact force rises which prevent the sheet to
stretch freely. Since the contact of the sheet and the
mold’s surface starts at the mold’s center and

spreads till the mold’s wall, the effects of the contact
force and the applied pressure result in a nonlinear
decrease of the sheet thickness towards the mold’s
wall. At the edge between the mold’s base and the
mold’s wall the applied pressure pushes the soft
polymer to the edge, which results in a stabilization
and a slight increase of the sheet thickness in this
region. On the mold’s wall, the thickness of the sheet
shows a dramatic decrease because it’s the last part
of the sheet to get in contact with the mold’s surface.
On the mold’s wall surface, the sheet stretches freely
under the applied pressure without any contact with
the mold’s surfaces. This large variation of the sheet
thickness on the mold’s wall surface induces an im-
portant orientation of the polymer molecular chains
(see Fig. 9). Figure 9 shows the equivalent molecular
chains stretch, kn, calculated from eq. (11). The

Figure 7 Strain rate time dependence of the polymer
sheet on the wall and the center of the mold.

Figure 8 Predicted profile of the polymeric sheet thick-
ness for different temperatures from the center of the mold
to the clamp.

Figure 9 Predicted profile of the polymer molecular
chains equivalent stretch for different temperature from
the center of the mold to the clamp.

Figure 10 Predicted profile of the polymer molecular
chains equivalent stretch for different temperature from
the center of the mold to the clamp.
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increase of temperature results in a slight reduction
of the sheet thickness on the mold’s wall, which in
turn results on a significant increase of the polymer
molecular chains orientation in this region. This tem-
perature dependence of the molecular orientation
might not be as important as it is seen in Figure 10.
In fact, we did not account of the dependence on
temperature of the chains relaxation’s rate through
the parameter CF [eq. (13)] as it is suggested by
Boyce et al.6 The high molecular orientation induces
an important contribution of the network resistance
[eq. (8)] to the mechanical properties of the final
product. Figure 10 shows the equivalent Mises net-
work resistance



TB

�
eq

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2

�

TB

�
ij



TB

�
ij

q

profile, which is maximum on the mold’s wall
region because of high orientation of the polymer
molecular chains in this region. The variation of the
network resistance between the mold’s center and
mold’s wall is due to the contact of the polymer
sheet with the mold’s base surface. The radial poly-
mer sheet temperature profile is shown in Figure 11
for the two test temperatures used in our simula-
tions. The temperature curves show a slight varia-
tion between the mold’s center and the molds wall
due to the low stretching of the polymer sheet in
this region. However, the large plastic deformation
of the polymer sheet on the mold’s wall leads to a
significant increase of the temperature. Figure 11
show that more the polymer becomes soft more the
adiabatic heating is less important. This behavior is
accounted for by introducing the temperature de-

pendence of the physical properties (q(y) and c(y)) in
the eq. (15), which is given by eqs. (19) and (20).

CONCLUSION

We have successfully implemented a micromechani-
cal model for the simulation of the thermoforming
process of the amorphous thermoplastic polymers.
The behavior of the polymeric material is described by
a temperature and strain rate sensitive elastic visco-
plastic model. The simulations are conducted using
the finite element method. The predicted results show
a strong dependence of the polymeric sheet thickness
and molecular orientation on the process temperature.
The sheet thickness depends on the applied pressure
and the contact forces, which rise once the sheet
reaches the mold surface. The high stretching on the
mold’s wall leads to high orientation of the polymer
molecular chains, which in turn results in high me-
chanical properties of the final product at this region.
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